ACTIVE MANAGEMENT INFLUENCES ON BIOGEOCHEMISTRY IN A NUTRIENT POOR WETLAND

Christa Zweig
Senior Scientist

12th International Symposium on
Biogeochemistry of Wetlands
April 25, 2018

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Restoration Challenges

Restoration and Active Management

Strandelow

Z5-3 AMI

Hypotheses

Flow

Dissolved Oxygen

Floc dynamics

Species dynamics

Flow

- Flow will increase further into the footprint
- Increased light penetration will increase algal growth and O2 production.
- Increased decomposition from dead material will decrease O2 production
- Floc production will increase
- Floc transport would increase with decreased frontal area
- Floc chemistry will change (pending analysis)
- Plant species will transition to more slough-like species

SAWINGLOOM

Dissolved Oxygen

- Flow will increase further into the footprint
- Increased light penetration will increase algal growth and O2 production.
- Increased decomposition from dead material will decrease O2 production
- Floc production will increase
- Floc transport would increase with decreased frontal area
- Floc chemistry will change (pending analysis)
- Plant species will transition to more slough-like species

Dissolved Oxygen

Floc dynamics

- Flow will increase further into the footprint
- Increased light penetration will increase algal growth and O2 production.
- Increased decomposition from dead material will decrease O2 production
- Floc production will increase
- Floc transport would increase with decreased frontal area
- Floc chemistry will change (pending analysis)
- Plant species will transition to more slough-like species

Species dynamics

- Flow will increase further into the footprint
- Increased light penetration will increase algal growth and O2 production.
- Increased decomposition from dead material will decrease O2 production
- Floc production will increase
- Floc transport would increase with decreased frontal area
- Floc chemistry will change (pending analysis)
- Plant species will transition to more slough-like species

